A Latent Variable Model of Synchronous Syntactic-Semantic Parsing for Multiple Languages
نویسندگان
چکیده
Motivated by the large number of languages (seven) and the short development time (two months) of the 2009 CoNLL shared task, we exploited latent variables to avoid the costly process of hand-crafted feature engineering, allowing the latent variables to induce features from the data. We took a pre-existing generative latent variable model of joint syntacticsemantic dependency parsing, developed for English, and applied it to six new languages with minimal adjustments. The parser’s robustness across languages indicates that this parser has a very general feature set. The parser’s high performance indicates that its latent variables succeeded in inducing effective features. This system was ranked third overall with a macro averaged F1 score of 82.14%, only 0.5% worse than the best system.
منابع مشابه
A Latent Variable Model of Synchronous Parsing for Syntactic and Semantic Dependencies
We propose a solution to the challenge of the CoNLL 2008 shared task that uses a generative history-based latent variable model to predict the most likely derivation of a synchronous dependency parser for both syntactic and semantic dependencies. The submitted model yields 79.1% macroaverage F1 performance, for the joint task, 86.9% syntactic dependencies LAS and 71.0% semantic dependencies F1....
متن کاملMultilingual Joint Parsing of Syntactic and Semantic Dependencies with a Latent Variable Model
Current investigations in data-driven models of parsing have shifted from purely syntactic analysis to richer semantic representations, showing that the successful recovery of the meaning of text requires structured analyses of both its grammar and its semantics. In this article, we report on a joint generative history-based model to predict the most likely derivation of a dependency parser for...
متن کاملOnline Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies
This paper investigates a generative history-based parsing model that synchronises the derivation of non-planar graphs representing semantic dependencies with the derivation of dependency trees representing syntactic structures. To process non-planarity online, the semantic transition-based parser uses a new technique to dynamically reorder nodes during the derivation. While the synchronised de...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کامل